Twistor space of complex 2-plane Grassmannian and Hopf hypersurfaces in non-flat complex space forms

Makoto Kimura(Ibaraki University)

March 31, 2017

Workshop on Differential Geometry, Gwangju-2017

• Gauss map of hypersurface in \mathbb{S}^{n+1} , and parallel hypersurfaces,

- Gauss map of hypersurface in \mathbb{S}^{n+1} , and parallel hypersurfaces,
- Gauss map of real hypersurfaces in \mathbb{CP}^n and quaternionic Kähler structure of $\mathbb{G}_2(\mathbb{C}^{n+1})$,

- Gauss map of hypersurface in \mathbb{S}^{n+1} , and parallel hypersurfaces,
- Gauss map of real hypersurfaces in \mathbb{CP}^n and quaternionic Kähler structure of $\mathbb{G}_2(\mathbb{C}^{n+1})$,
- Hopf hypersurfaces in \mathbb{CH}^n and para-quaternionic Kähler structure of $\mathbb{G}_{1,1}(\mathbb{C}_1^{n+1})$,

- Gauss map of hypersurface in \mathbb{S}^{n+1} , and parallel hypersurfaces,
- Gauss map of real hypersurfaces in \mathbb{CP}^n and quaternionic Kähler structure of $\mathbb{G}_2(\mathbb{C}^{n+1})$,
- Hopf hypersurfaces in \mathbb{CH}^n and para-quaternionic Kähler structure of $\mathbb{G}_{1,1}(\mathbb{C}_1^{n+1})$,
- Ruled Lagrangian submanifolds in \mathbb{CP}^n and some quarter dimensional submanifolds of $\mathbb{G}_2(\mathbb{C}^{n+1})$.

ullet For an immersion $x:M^n o \mathbb{S}^{n+1}\subset \mathbb{R}^{n+2}$,

- For an immersion $x:M^n\to\mathbb{S}^{n+1}\subset\mathbb{R}^{n+2}$,
- ullet let $x(p)\in\mathbb{S}^{n+1}\subset\mathbb{R}^{n+2}$ be the position vector at $p\in M$, and

- For an immersion $x:M^n\to\mathbb{S}^{n+1}\subset\mathbb{R}^{n+2}$,
- ullet let $x(p)\in\mathbb{S}^{n+1}\subset\mathbb{R}^{n+2}$ be the position vector at $p\in M$, and
- ullet let N_p be a unit normal vector of oriented hypersurface $M\subset \mathbb{S}^{n+1}$ at $p\in M$.

- For an immersion $x:M^n\to\mathbb{S}^{n+1}\subset\mathbb{R}^{n+2}$,
- ullet let $x(p)\in\mathbb{S}^{n+1}\subset\mathbb{R}^{n+2}$ be the position vector at $p\in M$, and
- ullet let N_p be a unit normal vector of oriented hypersurface $M\subset \mathbb{S}^{n+1}$ at $p\in M$.
- ullet Then the Gauss map $\gamma:M o\widetilde{\mathbb{G}}_2(\mathbb{R}^{n+2})\cong\mathbb{Q}^n$ is defined by

- ullet For an immersion $x:M^n o \mathbb{S}^{n+1} \subset \mathbb{R}^{n+2}$,
- ullet let $x(p)\in\mathbb{S}^{n+1}\subset\mathbb{R}^{n+2}$ be the position vector at $p\in M$, and
- ullet let N_p be a unit normal vector of oriented hypersurface $M\subset \mathbb{S}^{n+1}$ at $p\in M$.
- ullet Then the Gauss map $\gamma:M o ilde{\mathbb{G}}_2(\mathbb{R}^{n+2})\cong \mathbb{Q}^n$ is defined by
- $oldsymbol{\gamma}(p) = x(p) \wedge N_p$ (B. Palmer, 1997, Diff. Geom. Appl.).

• Then the image of the Gauss map $\gamma(M)$ is a Lagrangian submanifold of complex quadric \mathbb{Q}^n .

- Then the image of the Gauss map $\gamma(M)$ is a Lagrangian submanifold of complex quadric \mathbb{Q}^n .
- Moreover, if $M^n \subset \mathbb{S}^{n+1}$ is either isoparametric or austere, then $\gamma(M) \subset \mathbb{Q}^n$ is a minimal Lagrangian submanifold.

- Then the image of the Gauss map $\gamma(M)$ is a Lagrangian submanifold of complex quadric \mathbb{Q}^n .
- Moreover, if $M^n \subset \mathbb{S}^{n+1}$ is either isoparametric or austere, then $\gamma(M) \subset \mathbb{Q}^n$ is a minimal Lagrangian submanifold.
- Also for parallel hypersurface $M_r:=\cos rx+\sin rN$ $(r\in\mathbb{R})$ of M, the Gauss image is not changed: $\gamma(M)=\gamma(M_r)$.

ullet Conversely, let $\gamma:M^n o \mathbb{Q}^n$ be a Lagrangian immersion.

- ullet Conversely, let $\gamma:M^n o \mathbb{Q}^n$ be a Lagrangian immersion.
- Then we have a lift $\tilde{\gamma}:M^n\to V_2(\mathbb{R}^{n+2})$ to real Stiefel manifold, and with respect to a contact structure of $V_2(\mathbb{R}^{n+1})$, $\tilde{\gamma}$ is a Legendrian immersion.

- ullet Conversely, let $\gamma:M^n o \mathbb{Q}^n$ be a Lagrangian immersion.
- Then we have a lift $\tilde{\gamma}:M^n\to V_2(\mathbb{R}^{n+2})$ to real Stiefel manifold, and with respect to a contact structure of $V_2(\mathbb{R}^{n+1})$, $\tilde{\gamma}$ is a Legendrian immersion.
- ullet If we denote $ilde{\gamma}(p)=(u_1(p),u_2(p))\in V_2(\mathbb{R}^{n+2})$, then for $r\in\mathbb{R}$,

- ullet Conversely, let $\gamma:M^n o \mathbb{Q}^n$ be a Lagrangian immersion.
- Then we have a lift $\tilde{\gamma}: M^n \to V_2(\mathbb{R}^{n+2})$ to real Stiefel manifold, and with respect to a contact structure of $V_2(\mathbb{R}^{n+1})$, $\tilde{\gamma}$ is a Legendrian immersion.
- ullet If we denote $ilde{\gamma}(p)=(u_1(p),u_2(p))\in V_2(\mathbb{R}^{n+2})$, then for $r\in\mathbb{R}$,
- $p\mapsto \cos ru_1(p)+\sin ru_2(p)$ gives original family of "parallel hypersurfaces" in \mathbb{S}^{n+1} .

- ullet Conversely, let $\gamma:M^n o \mathbb{Q}^n$ be a Lagrangian immersion.
- Then we have a lift $\tilde{\gamma}:M^n\to V_2(\mathbb{R}^{n+2})$ to real Stiefel manifold, and with respect to a contact structure of $V_2(\mathbb{R}^{n+1})$, $\tilde{\gamma}$ is a Legendrian immersion.
- ullet If we denote $ilde{\gamma}(p)=(u_1(p),u_2(p))\in V_2(\mathbb{R}^{n+2})$, then for $r\in\mathbb{R}$,
- $p \mapsto \cos r u_1(p) + \sin r u_2(p)$ gives original family of "parallel hypersurfaces" in \mathbb{S}^{n+1} .
- Anciaux (2014, Trans. Amer. Math. Soc.) generalized the result to hypersurfaces in hyperbolic space and indefinite real space forms.

• For a real hypersurface M^{2n-1} in \mathbb{CP}^n , we consider the following diagram:

• For a real hypersurface M^{2n-1} in \mathbb{CP}^n , we consider the following diagram:

 $\pi^{-1}(M) \xrightarrow{w} \mathbb{S}^{2n+1} \xrightarrow{\iota} \mathbb{C}^{n+1}$ $\downarrow \qquad \qquad \downarrow \pi \qquad \qquad .$ $M^{2n-1} \xrightarrow{x} \mathbb{CP}^n$

• For a real hypersurface M^{2n-1} in \mathbb{CP}^n , we consider the following diagram:

 $\pi^{-1}(M) \stackrel{}{\longrightarrow} \mathbb{S}^{2n+1} \stackrel{}{\longrightarrow} \mathbb{C}^{n+1} \ \downarrow \qquad \qquad \downarrow \pi \qquad \qquad . \ M^{2n-1} \stackrel{}{\longrightarrow} \mathbb{CP}^n$

ullet For $p\in M$, take a point $z_p\in \pi^{-1}(x(p))\subset \pi^{-1}(M)$ and let N_p' be a holizontal lift of unit normal of $M\subset \mathbb{CP}^n$ at z_p .

• If we put $\gamma(p) = \operatorname{span}_{\mathbb{C}}\{z_p, N_p'\}$, then the map $\gamma: M \to \mathbb{G}_2(\mathbb{C}^{n+1})$ is well-defined.

- If we put $\gamma(p) = \operatorname{span}_{\mathbb{C}}\{z_p, N_p'\}$, then the map $\gamma: M \to \mathbb{G}_2(\mathbb{C}^{n+1})$ is well-defined.
- ullet We call γ as the Gauss map of real hypersurface M in \mathbb{CP}^n .

- If we put $\gamma(p) = \operatorname{span}_{\mathbb{C}}\{z_p, N_p'\}$, then the map $\gamma: M \to \mathbb{G}_2(\mathbb{C}^{n+1})$ is well-defined.
- ullet We call γ as the Gauss map of real hypersurface M in \mathbb{CP}^n .
- Note that for a parallel hypersurface $M_r:=\pi(\cos rz_p+\sin rN_p')$ of M, the image of the Gauss map $\gamma:M^{2n-1}\to\mathbb{CP}^n$ is not changed: $\gamma(M)=\gamma(M_r)$.

ullet For a real hypersurface M^{2n-1} in Kähler manifold (\widetilde{M}^n,J) and a unit normal vector N,

- ullet For a real hypersurface M^{2n-1} in Kähler manifold (\widetilde{M}^n,J) and a unit normal vector N,
- a vector $\xi := -JN$ tangent to M is called the structure vector of M.

- ullet For a real hypersurface M^{2n-1} in Kähler manifold (\widetilde{M}^n,J) and a unit normal vector N,
- a vector $\xi := -JN$ tangent to M is called the structure vector of M.
- And when ξ is an eigenvector of the shape operator A of M, i.e., $A\xi = \mu \xi$, we call M a Hopf hypersurface in \widetilde{M} , and μ the Hopf principal curvature.

- ullet For a real hypersurface M^{2n-1} in Kähler manifold (\widetilde{M}^n,J) and a unit normal vector N,
- a vector $\xi := -JN$ tangent to M is called the structure vector of M.
- And when ξ is an eigenvector of the shape operator A of M, i.e., $A\xi = \mu \xi$, we call M a Hopf hypersurface in \widetilde{M} , and μ the Hopf principal curvature.
- If \widetilde{M} is a non-flat complex space form $\widetilde{M}^n(c)$ $(c \neq 0)$, then μ is constant on M (Y. Maeda and Ki-Suh) and

- ullet For a real hypersurface M^{2n-1} in Kähler manifold (\widetilde{M}^n,J) and a unit normal vector N,
- a vector $\xi := -JN$ tangent to M is called the structure vector of M.
- And when ξ is an eigenvector of the shape operator A of M, i.e., $A\xi = \mu \xi$, we call M a Hopf hypersurface in \widetilde{M} , and μ the Hopf principal curvature.
- If \widetilde{M} is a non-flat complex space form $\widetilde{M}^n(c)$ $(c \neq 0)$, then μ is constant on M (Y. Maeda and Ki-Suh) and
- when c > 0, each integral curve of ξ is a geodesic (resp. equidistance curve from a geodesic) in $\mathbb{CP}^1 \subset \mathbb{CP}^n$, provided $\mu = 0$ (resp. $\mu \neq 0$).

• A real hypersurface which lies on a tube over a complex submanifold Σ in \mathbb{CP}^n is Hopf.

- A real hypersurface which lies on a tube over a complex submanifold Σ in \mathbb{CP}^n is Hopf.
- Conversely, if a Hopf hypersurface M in $\mathbb{CP}^n(4)$ satisfies $A\xi=\mu\xi$, and for $r\in(0,\pi/2)$ with $\mu=2\cot 2r$, $r\in(0,\pi/2)$, if the rank of the focal map $\phi_r:M\to\mathbb{CP}^n$ is constant, then

- A real hypersurface which lies on a tube over a complex submanifold Σ in \mathbb{CP}^n is Hopf.
- Conversely, if a Hopf hypersurface M in $\mathbb{CP}^n(4)$ satisfies $A\xi=\mu\xi$, and for $r\in(0,\pi/2)$ with $\mu=2\cot 2r$, $r\in(0,\pi/2)$, if the rank of the focal map $\phi_r:M\to\mathbb{CP}^n$ is constant, then
- $\phi_r(M)$ is a complex submanifold of $\mathbb{CP}^n(4)$ and M lies on a tube over $\phi_r(M)$. (Cecil-Ryan, 1982, Trans. Amer. Math. Soc.).

- A real hypersurface which lies on a tube over a complex submanifold Σ in \mathbb{CP}^n is Hopf.
- Conversely, if a Hopf hypersurface M in $\mathbb{CP}^n(4)$ satisfies $A\xi=\mu\xi$, and for $r\in(0,\pi/2)$ with $\mu=2\cot 2r$, $r\in(0,\pi/2)$, if the rank of the focal map $\phi_r:M\to\mathbb{CP}^n$ is constant, then
- $\phi_r(M)$ is a complex submanifold of $\mathbb{CP}^n(4)$ and M lies on a tube over $\phi_r(M)$. (Cecil-Ryan, 1982, Trans. Amer. Math. Soc.).
- Also they showed that if M is a Hopf hypersurface in \mathbb{CP}^n , then each parallel hypersurface M_r is also Hopf.

• After that, Borisenko(2001, Illinois J. Math.) obtained some results concerning Hopf hypersurfaces in \mathbb{CP}^n without assumption of rank about the focal map.

- After that, Borisenko(2001, Illinois J. Math.) obtained some results concerning Hopf hypersurfaces in \mathbb{CP}^n without assumption of rank about the focal map.
- For example, he showed that compact embedded Hopf hypersurface in \mathbb{CP}^n lies on a tube over an algebraic variety.

- After that, Borisenko(2001, Illinois J. Math.) obtained some results concerning Hopf hypersurfaces in \mathbb{CP}^n without assumption of rank about the focal map.
- For example, he showed that compact embedded Hopf hypersurface in \mathbb{CP}^n lies on a tube over an algebraic variety.
- We will give a characterization of Hopf hypersurface M in \mathbb{CP}^n by using the Gauss map $\gamma: M \to \mathbb{G}_2(\mathbb{C}^{n+2})$.

• Montiel (1985, J. Math. Soc. Japan) proved that:

- Montiel (1985, J. Math. Soc. Japan) proved that:
- Any real hypersurface which lies on a tube over a complex submanifold in $\mathbb{CH}^n(-4)$ is Hopf with $|\mu| > 2$. and

- Montiel (1985, J. Math. Soc. Japan) proved that:
- Any real hypersurface which lies on a tube over a complex submanifold in $\mathbb{CH}^n(-4)$ is Hopf with $|\mu| > 2$. and
- Hopf hypersurface M with Hopf curvature μ with $|\mu|>2$ in complex hyperbolic space $\mathbb{CH}^n(-4)$

- Montiel (1985, J. Math. Soc. Japan) proved that:
- Any real hypersurface which lies on a tube over a complex submanifold in $\mathbb{CH}^n(-4)$ is Hopf with $|\mu| > 2$. and
- ullet Hopf hypersurface M with Hopf curvature μ with $|\mu|>2$ in complex hyperbolic space $\mathbb{CH}^n(-4)$
- lies on a tube of radius r over a complex submanifold in \mathbb{CH}^n .

- Montiel (1985, J. Math. Soc. Japan) proved that:
- Any real hypersurface which lies on a tube over a complex submanifold in $\mathbb{CH}^n(-4)$ is Hopf with $|\mu| > 2$. and
- ullet Hopf hypersurface M with Hopf curvature μ with $|\mu|>2$ in complex hyperbolic space $\mathbb{CH}^n(-4)$
- ullet lies on a tube of radius r over a complex submanifold in \mathbb{CH}^n .
- provided that the rank of the focal map is constant as Cecil-Ryan's Theorem.

 On the other hand, Ivey (2011, Results Math.) proved that

- On the other hand, Ivey (2011, Results Math.) proved that
- ullet a Hopf hypersurface with $|\mu|<2$ in \mathbb{CH}^n may be constructed from

- On the other hand, Ivey (2011, Results Math.) proved that
- ullet a Hopf hypersurface with $|\mu| < 2$ in \mathbb{CH}^n may be constructed from
- an arbitrary pair of Legendrian submanifolds in \mathbb{S}^{2n-1} .

- On the other hand, Ivey (2011, Results Math.) proved that
- ullet a Hopf hypersurface with $|\mu|<2$ in \mathbb{CH}^n may be constructed from
- an arbitrary pair of Legendrian submanifolds in \mathbb{S}^{2n-1} .
- Structure theorem for Hopf hypersurfaces with $\mu=\pm 2$ was not known.

• Let M^{2n-1} in $\mathbb{CH}^n = \mathbb{CH}^n(-4)$ be a Hopf hypersurface with Hopf curvature μ .

- Let M^{2n-1} in $\mathbb{CH}^n = \mathbb{CH}^n(-4)$ be a Hopf hypersurface with Hopf curvature μ .
- Each integral curve of ξ is a geodesic circle of radius r>0, lies in $\mathbb{CH}^1\subset\mathbb{CH}^n$, provided $|\mu|>2$ with $\mu=2\coth 2r$,

- Let M^{2n-1} in $\mathbb{CH}^n = \mathbb{CH}^n(-4)$ be a Hopf hypersurface with Hopf curvature μ .
- Each integral curve of ξ is a geodesic circle of radius r>0, lies in $\mathbb{CH}^1\subset\mathbb{CH}^n$, provided $|\mu|>2$ with $\mu=2\coth 2r$,
- Each integral curve of ξ is an equidistance curve of distance $r \geq 0$ from a geodesic, lies in $\mathbb{CH}^1 \subset \mathbb{CH}^n$, provided $|\mu| < 2$ with $\mu = 2 \tanh 2r$,

- Let M^{2n-1} in $\mathbb{CH}^n = \mathbb{CH}^n(-4)$ be a Hopf hypersurface with Hopf curvature μ .
- Each integral curve of ξ is a geodesic circle of radius r>0, lies in $\mathbb{CH}^1\subset\mathbb{CH}^n$, provided $|\mu|>2$ with $\mu=2\coth 2r$,
- Each integral curve of ξ is an equidistance curve of distance $r \geq 0$ from a geodesic, lies in $\mathbb{CH}^1 \subset \mathbb{CH}^n$, provided $|\mu| < 2$ with $\mu = 2 \tanh 2r$,
- Each integral curve of ξ is a horocycle lies in $\mathbb{CH}^1 \subset \mathbb{CH}^n$, provided $|\mu| = 2$.

• Complex 2-plane Grassmann manifold $\widetilde{M} = \mathbb{G}_2(\mathbb{C}^{n+1})$ has two important geometric structures, (i) Kähler and (ii) quaternionic Kähler structure (\tilde{g}, Q) :

- Complex 2-plane Grassmann manifold $M = \mathbb{G}_2(\mathbb{C}^{n+1})$ has two important geometric structures, (i) Kähler and (ii) quaternionic Kähler structure (\tilde{g}, Q) :
- Here, \tilde{g} is a Riemannian metric of \widetilde{M} , Q is a subbundle of $\operatorname{End} T\widetilde{M}$ with rank 3, satisfying:

- Complex 2-plane Grassmann manifold $\widetilde{M}=\mathbb{G}_2(\mathbb{C}^{n+1})$ has two important geometric structures, (i) Kähler and (ii) quaternionic Kähler structure (\tilde{g},Q) :
- Here, \tilde{g} is a Riemannian metric of \widetilde{M} , Q is a subbundle of $\operatorname{End} T\widetilde{M}$ with rank 3, satisfying:
- For each $p \in \widetilde{M}$, there exists a neighborhood $U \ni p$, such that there exists local frame field $\{\tilde{I}_1, \tilde{I}_2, \tilde{I}_3\}$ of Q.

$$ilde{I}_1^2 = ilde{I}_2^2 = ilde{I}_3^2 = -1, \quad ilde{I}_1 ilde{I}_2 = - ilde{I}_2 ilde{I}_1 = ilde{I}_3, \ ilde{I}_2 ilde{I}_3 = - ilde{I}_3 ilde{I}_2 = ilde{I}_1, \quad ilde{I}_3 ilde{I}_1 = - ilde{I}_1 ilde{I}_3 = ilde{I}_2.$$

$$ilde{I}_1^2 = ilde{I}_2^2 = ilde{I}_3^2 = -1, \quad ilde{I}_1 ilde{I}_2 = - ilde{I}_2 ilde{I}_1 = ilde{I}_3, \ ilde{I}_2 ilde{I}_3 = - ilde{I}_3 ilde{I}_2 = ilde{I}_1, \quad ilde{I}_3 ilde{I}_1 = - ilde{I}_1 ilde{I}_3 = ilde{I}_2.$$

 $oldsymbol{\circ}$ For each $L\in Q_p$, $ilde{g}$ is invariant, i.e., $ilde{g}_p(LX,Y)+ ilde{g}_p(X,LY)=0$ for $X,Y\in T_p\widetilde{M}$, $p\in \widetilde{M}$.

$$ilde{I}_1^2 = ilde{I}_2^2 = ilde{I}_3^2 = -1, \quad ilde{I}_1 ilde{I}_2 = - ilde{I}_2 ilde{I}_1 = ilde{I}_3, \ ilde{I}_2 ilde{I}_3 = - ilde{I}_3 ilde{I}_2 = ilde{I}_1, \quad ilde{I}_3 ilde{I}_1 = - ilde{I}_1 ilde{I}_3 = ilde{I}_2.$$

- $oldsymbol{\circ}$ For each $L\in Q_p$, $ilde{g}$ is invariant, i.e., $ilde{g}_p(LX,Y)+ ilde{g}_p(X,LY)=0$ for $X,Y\in T_p\widetilde{M}$, $p\in \widetilde{M}$.
- ullet Vector bundle Q is parallel with respect to the Levi-Civita connection of \widetilde{g} at $\operatorname{End} T\widetilde{M}$.

• A submanifold M^{2m} in quaternionic Kähler manifold \tilde{M} is called almost Hermitian submanifold, if there exists a section \tilde{I} of vector bundle $Q|_{M}$ over M such that

- A submanifold M^{2m} in quaternionic Kähler manifold \tilde{M} is called almost Hermitian submanifold, if there exists a section \tilde{I} of vector bundle $Q|_{M}$ over M such that
- ullet (1) $ilde{I}^2=-1$, and (2) $ilde{I}TM=TM$.

- ullet A submanifold M^{2m} in quaternionic Kähler manifold \widetilde{M} is called almost Hermitian submanifold, if there exists a section \widetilde{I} of vector bundle $Q|_{M}$ over M such that
- ullet (1) $ilde{I}^2=-1$, and (2) $ilde{I}TM=TM$.
- ullet if we write the almost complex structure on M which is induced by $ilde{I}$ as I, then

- ullet A submanifold M^{2m} in quaternionic Kähler manifold \widetilde{M} is called almost Hermitian submanifold, if there exists a section \widetilde{I} of vector bundle $Q|_{M}$ over M such that
- ullet (1) $ilde{I}^2=-1$, and (2) $ilde{I}TM=TM$.
- ullet if we write the almost complex structure on M which is induced by $ilde{I}$ as I, then
- ullet with respect to the induced metric, (M,I) is an almost Hermitian manifold.

Totally complex submanifold of Q.K. manifold

ullet In particular, when almost Hermitian submanifold $(M,ar{g},I)$ is Kähler, we call M a Kähler submanifold of quaternionic Kähler manifold \widetilde{M} .

Totally complex submanifold of Q.K. manifold

- In particular, when almost Hermitian submanifold (M, \bar{g}, I) is Kähler, we call M a Kähler submanifold of quaternionic Kähler manifold \widetilde{M} .
- Similarly, an almost Hermitian submanifold (M, \bar{g}, I) is called totally complex submanifold if at each point $p \in M$, with respect to $\tilde{L} \in Q_p$ which anti-commute with \tilde{I}_p , $\tilde{L}T_pM \perp T_pM$ hold.

Totally complex submanifold of Q.K. manifold

- In particular, when almost Hermitian submanifold (M, \bar{g}, I) is Kähler, we call M a Kähler submanifold of quaternionic Kähler manifold \widetilde{M} .
- Similarly, an almost Hermitian submanifold (M, \bar{g}, I) is called totally complex submanifold if at each point $p \in M$, with respect to $\tilde{L} \in Q_p$ which anti-commute with \tilde{I}_p , $\tilde{L}T_pM \perp T_pM$ hold.
- In quaternionic Kähler manifold, a submanifold is totally complex if and only if it is Kähler (Alekseevsky-Marchiafava, 2001, Osaka J. Math.).

• Theorem 1. (K., Diff. Geom. Appl. 2014) Let M^{2n-1} be a real hypersurface in complex projective space \mathbb{CP}^n , and let $\gamma: M \to \mathbb{G}_2(\mathbb{C}^{n+1})$ be the Gauss map.

- Theorem 1. (K., Diff. Geom. Appl. 2014) Let M^{2n-1} be a real hypersurface in complex projective space \mathbb{CP}^n , and let $\gamma: M \to \mathbb{G}_2(\mathbb{C}^{n+1})$ be the Gauss map.
- If M is not Hopf, then the Gauss map γ is an immersion.

- Theorem 1. (K., Diff. Geom. Appl. 2014) Let M^{2n-1} be a real hypersurface in complex projective space \mathbb{CP}^n , and let $\gamma: M \to \mathbb{G}_2(\mathbb{C}^{n+1})$ be the Gauss map.
- ullet If M is not Hopf, then the Gauss map γ is an immersion.
- If M is a Hopf hypersurface, then the image $\gamma(M)$ is a half-dimensional totally complex submanifold of $\mathbb{G}_2(\mathbb{C}^{n+1})$.

- Theorem 1. (K., Diff. Geom. Appl. 2014) Let M^{2n-1} be a real hypersurface in complex projective space \mathbb{CP}^n , and let $\gamma: M \to \mathbb{G}_2(\mathbb{C}^{n+1})$ be the Gauss map.
- ullet If M is not Hopf, then the Gauss map γ is an immersion.
- If M is a Hopf hypersurface, then the image $\gamma(M)$ is a half-dimensional totally complex submanifold of $\mathbb{G}_2(\mathbb{C}^{n+1})$.
- And a Hopf hypersurface M in \mathbb{CP}^n is a total space of a circle bundle over a Kähler manifold such that the fibration is nothing but the Gauss map $\gamma: M \to \gamma(M)$.

ullet Let \widetilde{M} be a quaternionic Kähler manifold.

- ullet Let \widetilde{M} be a quaternionic Kähler manifold.
- Then the unit sphere subbundle $\mathcal{Z}=\{\widetilde{I}\in Q|\ \widetilde{I}^2=-1\} \text{ of } Q \text{ is called the twistor space of } \widetilde{M}.$

- ullet Let $\widetilde{oldsymbol{M}}$ be a quaternionic Kähler manifold.
- Then the unit sphere subbundle $\mathcal{Z}=\{\widetilde{I}\in Q|\ \widetilde{I}^2=-1\}$ of Q is called the twistor space of \widetilde{M} .
- ullet If \widetilde{M} has non-zero Ricci curvature, then ${\mathcal Z}$ admits a complex contact structure.

- ullet Let $\widetilde{oldsymbol{M}}$ be a quaternionic Kähler manifold.
- Then the unit sphere subbundle $\mathcal{Z}=\{\widetilde{I}\in Q|\ \widetilde{I}^2=-1\} \text{ of } Q \text{ is called the twistor space of } \widetilde{M}.$
- ullet If M has non-zero Ricci curvature, then ${\mathcal Z}$ admits a complex contact structure.
- ullet If \widetilde{M} has positive Ricci curvature, then $oldsymbol{\mathcal{Z}}$ admits an Einstein-Kähler metric with positive Ricci curvture,

- ullet Let \widetilde{M} be a quaternionic Kähler manifold.
- Then the unit sphere subbundle $\mathcal{Z}=\{\widetilde{I}\in Q|\ \widetilde{I}^2=-1\} \text{ of } Q \text{ is called the twistor space of } \widetilde{M}.$
- ullet If \widetilde{M} has non-zero Ricci curvature, then ${\mathcal Z}$ admits a complex contact structure.
- If \widetilde{M} has positive Ricci curvature, then ${\mathcal Z}$ admits an Einstein-Kähler metric with positive Ricci curvture,
- such that the twistor fibration $\pi: \mathcal{Z} \to \widetilde{M}$ is a Riemannian submersion with totally geodesic fibers.

Twistor space of $G_2(\mathbb{C}^{n+1})$

• Recently K. Tsukada investigated twistor space \mathcal{Z} of complex 2-plane Grassmannian $\mathbb{G}_2(\mathbb{C}^{n+1})$ (Diff. Geom. Appl. 2016),

Twistor space of $G_2(\mathbb{C}^{n+1})$

- Recently K. Tsukada investigated twistor space \mathbb{Z} of complex 2-plane Grassmannian $\mathbb{G}_2(\mathbb{C}^{n+1})$ (Diff. Geom. Appl. 2016),
- and he showed that $\mathcal Z$ is identified with the projective cotangent bundle $P(T^*\mathbb{CP}^n)$ of a complex projective space \mathbb{CP}^n .

Twistor space of $G_2(\mathbb{C}^{n+1})$

- Recently K. Tsukada investigated twistor space \mathcal{Z} of complex 2-plane Grassmannian $\mathbb{G}_2(\mathbb{C}^{n+1})$ (Diff. Geom. Appl. 2016),
- and he showed that $\mathcal Z$ is identified with the projective cotangent bundle $P(T^*\mathbb{CP}^n)$ of a complex projective space \mathbb{CP}^n .
- As a homogeneous space, ${\mathcal Z}$ is expressed as U(n+1)/U(n-1) imes U(1) imes U(1).

• Let $V_2(\mathbb{C}^{n+1})$ be the complex Stiefel manifold of orthonormal 2-vectors (u_1, u_2) in \mathbb{C}^{n+1} , and

- Let $V_2(\mathbb{C}^{n+1})$ be the complex Stiefel manifold of orthonormal 2-vectors (u_1, u_2) in \mathbb{C}^{n+1} , and
- let $\pi^G: V_2(\mathbb{C}^{n+1}) \to \mathbb{G}_2(\mathbb{C}^{n+1})$ be the projection defined by $(u_1, u_2) \mapsto \mathbb{C}u_1 \oplus \mathbb{C}u_2$.

- Let $V_2(\mathbb{C}^{n+1})$ be the complex Stiefel manifold of orthonormal 2-vectors (u_1, u_2) in \mathbb{C}^{n+1} , and
- let $\pi^G: V_2(\mathbb{C}^{n+1}) \to \mathbb{G}_2(\mathbb{C}^{n+1})$ be the projection defined by $(u_1, u_2) \mapsto \mathbb{C}u_1 \oplus \mathbb{C}u_2$.
- Then tangent space $T_{\pi^G(u_1,u_2)}(\mathbb{G}_2(\mathbb{C}^{n+1}))$ is identified with $\{u_1,u_2\}^{\perp} \times \{u_1,u_2\}^{\perp}$ in $\mathbb{C}^{n+1} \times \mathbb{C}^{n+1}$ through π^G_* .

• With respect to $(u_1,u_2)\in V_2(\mathbb{C}^{n+1})$, a basis I_1,I_2 and I_3 of Q.K. structure of $\mathbb{G}_2(\mathbb{C}^{n+1})$ is given by: for $(x_1,x_2)\in\{u_1,u_2\}^\perp imes\{u_1,u_2\}^\perp$,

- With respect to $(u_1,u_2)\in V_2(\mathbb{C}^{n+1})$, a basis I_1,I_2 and I_3 of Q.K. structure of $\mathbb{G}_2(\mathbb{C}^{n+1})$ is given by: for $(x_1,x_2)\in\{u_1,u_2\}^\perp imes\{u_1,u_2\}^\perp$,
- $ullet \ I_1: (x_1,x_2) \mapsto (x_1,x_2) egin{pmatrix} 0 & -1 \ 1 & 0 \end{pmatrix} = (x_2,-x_1),$

- With respect to $(u_1,u_2)\in V_2(\mathbb{C}^{n+1})$, a basis I_1,I_2 and I_3 of Q.K. structure of $\mathbb{G}_2(\mathbb{C}^{n+1})$ is given by: for $(x_1,x_2)\in\{u_1,u_2\}^\perp imes\{u_1,u_2\}^\perp$,
- $ullet I_1: (x_1,x_2) \mapsto (x_1,x_2) egin{pmatrix} 0 & -1 \ 1 & 0 \end{pmatrix} = (x_2,-x_1),$
- $ullet \ I_2: (x_1,x_2) \mapsto (x_1,x_2) egin{pmatrix} i & 0 \ 0 & -i \end{pmatrix} = (ix_1,-ix_2),$

- With respect to $(u_1,u_2)\in V_2(\mathbb{C}^{n+1})$, a basis I_1,I_2 and I_3 of Q.K. structure of $\mathbb{G}_2(\mathbb{C}^{n+1})$ is given by: for $(x_1,x_2)\in\{u_1,u_2\}^\perp imes\{u_1,u_2\}^\perp$,
- $ullet I_1: (x_1,x_2) \mapsto (x_1,x_2) egin{pmatrix} 0 & -1 \ 1 & 0 \end{pmatrix} = (x_2,-x_1),$
- $ullet \ I_2: (x_1,x_2) \mapsto (x_1,x_2) egin{pmatrix} i & 0 \ 0 & -i \end{pmatrix} = (ix_1,-ix_2),$
- $ullet \ I_3: (x_1,x_2) \mapsto (x_1,x_2) egin{pmatrix} 0 & i \ i & 0 \end{pmatrix} = (ix_2,ix_1).$

• Hence each fiber of the twistor space \mathcal{Z} of $\mathbb{G}_2(\mathbb{C}^{n+1})$ is identified with the unit sphere S in a Lie algebra $\mathfrak{su}(2)$, and

- Hence each fiber of the twistor space \mathcal{Z} of $\mathbb{G}_2(\mathbb{C}^{n+1})$ is identified with the unit sphere S in a Lie algebra $\mathfrak{su}(2)$, and
- for each corresponding 1-parameter subgroup $\exp(sX)$ $(X \in S)$, orbits in the complex projective line $[u_1, u_2] = \mathbb{CP}^1$ in \mathbb{CP}^n are concentric circles.

- Hence each fiber of the twistor space \mathcal{Z} of $\mathbb{G}_2(\mathbb{C}^{n+1})$ is identified with the unit sphere S in a Lie algebra $\mathfrak{su}(2)$, and
- for each corresponding 1-parameter subgroup $\exp(sX)$ $(X \in S)$, orbits in the complex projective line $[u_1, u_2] = \mathbb{CP}^1$ in \mathbb{CP}^n are concentric circles.
- From this, we may identify the twistor space \mathcal{Z} of $\mathbb{G}_2(\mathbb{C}^{n+1})$ and the space of concentric circles in $\mathbb{CP}^1 \subset \mathbb{CP}^n$, and

- Hence each fiber of the twistor space \mathcal{Z} of $\mathbb{G}_2(\mathbb{C}^{n+1})$ is identified with the unit sphere S in a Lie algebra $\mathfrak{su}(2)$, and
- for each corresponding 1-parameter subgroup $\exp(sX)$ $(X \in S)$, orbits in the complex projective line $[u_1, u_2] = \mathbb{CP}^1$ in \mathbb{CP}^n are concentric circles.
- From this, we may identify the twistor space \mathcal{Z} of $\mathbb{G}_2(\mathbb{C}^{n+1})$ and the space of concentric circles in $\mathbb{CP}^1 \subset \mathbb{CP}^n$, and
- also \mathcal{Z} is identified with with the space of oriented geodesics in $\mathbb{CP}^1 \subset \mathbb{CP}^n$.

• Let M^{2n-1} be a Hopf hypersurface in \mathbb{CP}^n .

- Let M^{2n-1} be a Hopf hypersurface in \mathbb{CP}^n .
- Then, for each point p in M, if we denote $\psi(p)$ the (maximal) integral curve of ξ through p, which is a circle in $\mathbb{CP}^1 \subset \mathbb{CP}^n$, then

- Let M^{2n-1} be a Hopf hypersurface in \mathbb{CP}^n .
- Then, for each point p in M, if we denote $\psi(p)$ the (maximal) integral curve of ξ through p, which is a circle in $\mathbb{CP}^1 \subset \mathbb{CP}^n$, then
- ullet we have a map ψ from M to the twistor space ${\mathcal Z}$ of ${\mathbb G}_2({\mathbb C}^{n+1}).$

- Let M^{2n-1} be a Hopf hypersurface in \mathbb{CP}^n .
- Then, for each point p in M, if we denote $\psi(p)$ the (maximal) integral curve of ξ through p, which is a circle in $\mathbb{CP}^1 \subset \mathbb{CP}^n$, then
- we have a map ψ from M to the twistor space $\mathcal Z$ of $\mathbb G_2(\mathbb C^{n+1})$.
- We see that the image $\psi(M)$ is a complex submanifold of $\mathcal Z$ and horizontal with respect to the twistor fibration $\pi:\mathcal Z\to\mathbb G_2(\mathbb C^{n+1})$.

- Let M^{2n-1} be a Hopf hypersurface in \mathbb{CP}^n .
- Then, for each point p in M, if we denote $\psi(p)$ the (maximal) integral curve of ξ through p, which is a circle in $\mathbb{CP}^1 \subset \mathbb{CP}^n$, then
- we have a map ψ from M to the twistor space $\mathcal Z$ of $\mathbb G_2(\mathbb C^{n+1})$.
- We see that the image $\psi(M)$ is a complex submanifold of $\mathcal Z$ and horizontal with respect to the twistor fibration $\pi:\mathcal Z\to\mathbb G_2(\mathbb C^{n+1})$.
- Also $\pi(\psi(M))$ is a totally complex submanifold of $\mathbb{G}_2(\mathbb{C}^{n+1})$.

• Let $\varphi: \Sigma^{n-1} \to \mathbb{G}_2(\mathbb{C}^{n+1})$ be a totally complex immersion from a (half dimensional) Kähler manifold to complex 2-plane Grassmann manifold.

- Let $\varphi: \Sigma^{n-1} \to \mathbb{G}_2(\mathbb{C}^{n+1})$ be a totally complex immersion from a (half dimensional) Kähler manifold to complex 2-plane Grassmann manifold.
- ullet Then, for each point p in Σ , if we assign $ilde{I}_p \in Q_{arphi(p)}$,

- Let $\varphi: \Sigma^{n-1} \to \mathbb{G}_2(\mathbb{C}^{n+1})$ be a totally complex immersion from a (half dimensional) Kähler manifold to complex 2-plane Grassmann manifold.
- ullet Then, for each point p in Σ , if we assign $ilde{I}_p \in Q_{arphi(p)}$,
- then we have a submanifold $\tilde{I}(\Sigma)$ of the twistor space $\mathcal{Z}=\{\tilde{I}\in Q|\ \tilde{I}^2=-1\}$ of $\mathbb{G}_2(\mathbb{C}^{n+1})$ (natural lift).

- Let $\varphi: \Sigma^{n-1} \to \mathbb{G}_2(\mathbb{C}^{n+1})$ be a totally complex immersion from a (half dimensional) Kähler manifold to complex 2-plane Grassmann manifold.
- ullet Then, for each point p in Σ , if we assign $ilde{I}_p \in Q_{arphi(p)}$,
- then we have a submanifold $\tilde{I}(\Sigma)$ of the twistor space $\mathcal{Z} = \{\tilde{I} \in Q | \tilde{I}^2 = -1\}$ of $\mathbb{G}_2(\mathbb{C}^{n+1})$ (natural lift).
- Since Σ is a totally complex submanifold of $\mathbb{G}_2(\mathbb{C}^{n+1})$, $\tilde{I}(\Sigma)$ is a Legendrian submanifold of the twistor space \mathcal{Z} with respect to a complex contact structure (Alekseevsky-Marchiafava, 2005, Ann. Mat. Pura Appl.).

• Let E be an \mathbb{S}^1 -bundle over $\mathcal{Z} \cong L(\mathbb{CP}^n)$ such that each fiber is identified with oriented geodesic in \mathbb{CP}^n .

- Let E be an \mathbb{S}^1 -bundle over $\mathcal{Z} \cong L(\mathbb{CP}^n)$ such that each fiber is identified with oriented geodesic in \mathbb{CP}^n .
- With respect to the following diagram:

- Let E be an \mathbb{S}^1 -bundle over $\mathcal{Z} \cong L(\mathbb{CP}^n)$ such that each fiber is identified with oriented geodesic in \mathbb{CP}^n .
- With respect to the following diagram:

•

• The map $\Phi:=\psi\circ\eta: \tilde{I}^*E\to\mathbb{CP}^n$ gives Hopf hypersurface with $A\xi=0$ (on open subset of regular points of $M=\tilde{I}^*E$), and

- The map $\Phi:=\psi\circ\eta: \tilde{I}^*E\to\mathbb{CP}^n$ gives Hopf hypersurface with $A\xi=0$ (on open subset of regular points of $M=\tilde{I}^*E$), and
- its parallel hypersurface $\phi_r(\tilde{I}^*E)$ $(r \in (-\pi/4, \pi/4) \{0\})$ gives Hopf hypersurface with $A\xi = 2\tan 2r\xi$ (on open subset of regular points of $M = \tilde{I}^*E$).

Remarks

• Recently K. Tsukada proved that conormal bundle of any complex submanifold in \mathbb{CP}^n is realized as a half dimensional totally complex submanifold in $\mathbb{G}_2(\mathbb{C}^{n+1})$.

Remarks

- Recently K. Tsukada proved that conormal bundle of any complex submanifold in \mathbb{CP}^n is realized as a half dimensional totally complex submanifold in $\mathbb{G}_2(\mathbb{C}^{n+1})$.
- For real hypersurfaces in complex hyperbolic space \mathbb{CH}^n , we define Gauss map $\gamma:M \to \mathbb{G}_{1,1}(\mathbb{C}^{n+1}_1)$, and

Remarks

- Recently K. Tsukada proved that conormal bundle of any complex submanifold in \mathbb{CP}^n is realized as a half dimensional totally complex submanifold in $\mathbb{G}_2(\mathbb{C}^{n+1})$.
- For real hypersurfaces in complex hyperbolic space \mathbb{CH}^n , we define Gauss map $\gamma:M\to \mathbb{G}_{1,1}(\mathbb{C}^{n+1}_1)$, and
- we obtain similar results for Hopf hypersurfaces in CHⁿ by using para-quaternionic Kähler structure (J.T. Cho and M.K., Topol. Appl. 2015).

ullet An indefinite metric $\langle \; , \;
angle$ of index ${f 2}$ on ${\Bbb C}_1^{n+1}$ is given by

ullet An indefinite metric $\langle \; , \;
angle$ of index 2 on \mathbb{C}^{n+1}_1 is given by

$$\langle z,w
angle=\operatorname{Re}\left(-z_0ar{w}_0+\sum_{k=1}^nz_kar{w}_k
ight),$$
 $z=(z_0,\ldots,z_n),\,w=(w_0,\ldots,w_n)\in\mathbb{C}_1^{n+1}.$

• An indefinite metric $\langle \; , \; \rangle$ of index 2 on \mathbb{C}^{n+1}_1 is given by

$$\langle z,w
angle = \mathrm{Re}\left(-z_0ar{w}_0 + \sum_{k=1}^n z_kar{w}_k
ight),$$

$$z=(z_0,\ldots,z_n)$$
 , $w=(w_0,\ldots,w_n)\in\mathbb{C}_1^{n+1}$.

• The anti de Sitter space is defined by

$$\mathbb{H}_1^{2n+1}=\{z\in\mathbb{C}_1^{n+1}|\;\langle z,z
angle=-1\}.$$

• An indefinite metric $\langle \; , \; \rangle$ of index 2 on \mathbb{C}^{n+1}_1 is given by

$$\langle z,w
angle = \mathrm{Re}\left(-z_0ar{w}_0 + \sum_{k=1}^n z_kar{w}_k
ight),$$

$$z=(z_0,\ldots,z_n)$$
 , $w=(w_0,\ldots,w_n)\in\mathbb{C}_1^{n+1}$.

• The anti de Sitter space is defined by

$$\mathbb{H}_1^{2n+1}=\{z\in\mathbb{C}_1^{n+1}|\;\langle z,z
angle=-1\}.$$

• \mathbb{H}^{2n+1}_1 is the principal fiber bundle over \mathbb{CH}^n with the structure group \mathbb{S}^1 and the fibration $\pi:\mathbb{H}^{2n+1}_1\to\mathbb{CH}^n$.

Gauss map of real hypersurface in \mathbb{CH}^n

ullet Let $\Phi:M^{2n-1} o \mathbb{CH}^n$ be an immersion and let N_p be a unit normal vector of M at $p\in M$.

Gauss map of real hypersurface in \mathbb{CH}^n

- ullet Let $\Phi:M^{2n-1} o \mathbb{CH}^n$ be an immersion and let N_p be a unit normal vector of M at $p\in M$.
- $oldsymbol{eta}$ For each $p\in M^{2n-1}$, we put $G(p)=\mathbb{C}\pi^{-1}(\Phi(p))\oplus \mathbb{C}N_p.$

Gauss map of real hypersurface in \mathbb{CH}^n

- Let $\Phi: M^{2n-1} \to \mathbb{CH}^n$ be an immersion and let N_p be a unit normal vector of M at $p \in M$.
- ullet For each $p\in M^{2n-1}$, we put $G(p)=\mathbb{C}\pi^{-1}(\Phi(p))\oplus \mathbb{C}N_p$.
- Then we have a Gauss map $G: M^{2n-1} \to \mathbb{G}_{1,1}(\mathbb{C}^{n+1}_1)$ of real hypersurface M in \mathbb{CH}^n .

Split-quaternions

$$\begin{split} \bullet \ \ \widetilde{\mathbb{H}} &= C(2,0) = C(1,1), \ \text{Split-quaternions} \ \text{(or} \\ & \text{coquaternions, para-quaternions):} \\ & q = q_0 + iq_1 + jq_2 + kq_3, \ i^2 = -1, \ j^2 = k^2 = 1, \\ & ij = -ji = -k, \ jk = -kj = i, \ ki = -ik = -j, \\ & |q|^2 = q_0^2 + q_1^2 - q_2^2 - q_3^2, \ \exists \ \text{zero divisors,} \end{split}$$

Split-quaternions

• $\widetilde{\mathbb{H}}=C(2,0)=C(1,1)$, Split-quaternions (or coquaternions, para-quaternions): $q=q_0+iq_1+jq_2+kq_3,\ i^2=-1,\ j^2=k^2=1,\ ij=-ji=-k,\ jk=-kj=i,\ ki=-ik=-j,\ |q|^2=q_0^2+q_1^2-q_2^2-q_3^2,\ \exists\ {\sf zero\ divisors},$ • http://en.wikipedia.org/wiki/Split-quaternion

Split-quaternions

- http://en.wikipedia.org/wiki/Split-quaternion
- Introduced by James Cockle in 1849.

Para-quaternionic structure

$$\begin{array}{l} \bullet \ \{I_1,I_2,I_3\},\ I_1^2=-1,\ I_2^2=I_3^2=1,\\ I_1I_2=-I_2I_1=-I_3,\ I_2I_3=-I_3I_2=I_1,\\ I_3I_1=-I_1I_3=-I_2 \ \text{gives para-quaternionic structure,} \end{array}$$

Para-quaternionic structure

- $\begin{array}{l} \bullet \ \{I_1,I_2,I_3\},\ I_1^2=-1,\ I_2^2=I_3^2=1,\\ I_1I_2=-I_2I_1=-I_3,\ I_2I_3=-I_3I_2=I_1,\\ I_3I_1=-I_1I_3=-I_2 \ \text{gives para-quaternionic} \ \text{structure}, \end{array}$
- $ilde{V}=\{aI_1\!+\!bI_2\!+\!cI_3|\ a,b,c\in\mathbb{R}\}\cong\mathfrak{su}(1,1)\cong\mathbb{R}^3_1,$ and

Para-quaternionic structure

- $\begin{array}{l} \bullet \ \{I_1,I_2,I_3\},\ I_1^2=-1,\ I_2^2=I_3^2=1,\\ I_1I_2=-I_2I_1=-I_3,\ I_2I_3=-I_3I_2=I_1,\\ I_3I_1=-I_1I_3=-I_2 \ \text{gives para-quaternionic} \ \text{structure}, \end{array}$
- $ilde{V}=\{aI_1\!+\!bI_2\!+\!cI_3|\ a,b,c\in\mathbb{R}\}\cong\mathfrak{su}(1,1)\cong\mathbb{R}^3_1,$ and
- $oldsymbol{Q}_+=\{I\in ilde{V}|\ I^2=1\}\cong \mathbb{S}^2_1$: de-Sitter plane, $Q_-=\{I\in ilde{V}|\ I^2=-1\}\cong \mathbb{H}^2$: hyperbolic plane, $Q_0=\{I\in ilde{V}|\ I^2=0,\ I
 eq 0\}\cong ext{lightcone}.$

• Let $(\widetilde{M}^{4m}, \tilde{g}, \tilde{Q})$ be a para-quaternionic Kähler manifold with the para-quaternionic Kähler structure (\tilde{g}, \tilde{Q}) ,

- Let $(\widetilde{M}^{4m}, \widetilde{g}, \widetilde{Q})$ be a para-quaternionic Kähler manifold with the para-quaternionic Kähler structure $(\widetilde{g}, \widetilde{Q})$,
- that is, \tilde{g} is a neutral metric on \widetilde{M} and \widetilde{Q} is a rank 3 subbundle of $\operatorname{End} T\widetilde{M}$ which satisfies the following conditions:

- Let $(\widetilde{M}^{4m}, \tilde{g}, \tilde{Q})$ be a para-quaternionic Kähler manifold with the para-quaternionic Kähler structure (\tilde{g}, \tilde{Q}) ,
- that is, \tilde{g} is a neutral metric on \widetilde{M} and \widetilde{Q} is a rank 3 subbundle of $\operatorname{End} T\widetilde{M}$ which satisfies the following conditions:
- ullet For each $p\in\widetilde{M}$, there is a neighborhood U of p over which there exists a local frame field $\{ ilde{I}_1, ilde{I}_2, ilde{I}_3\}$ of $ilde{Q}$ satisfying

$$ilde{I}_1^2 = -1, \ ilde{I}_2^2 = ilde{I}_3^2 = 1, \quad ilde{I}_1 ilde{I}_2 = - ilde{I}_2 ilde{I}_1 = - ilde{I}_3, \ ilde{I}_2 ilde{I}_3 = - ilde{I}_3 ilde{I}_2 = ilde{I}_1, \quad ilde{I}_3 ilde{I}_1 = - ilde{I}_1 ilde{I}_3 = - ilde{I}_2.$$

$$ilde{I}_1^2 = -1, \ ilde{I}_2^2 = ilde{I}_3^2 = 1, \ ilde{I}_1 ilde{I}_2 = - ilde{I}_2 ilde{I}_1 = - ilde{I}_3, \ ilde{I}_2 ilde{I}_3 = - ilde{I}_3 ilde{I}_2 = ilde{I}_1, \ ilde{I}_3 ilde{I}_1 = - ilde{I}_1 ilde{I}_3 = - ilde{I}_2.$$

 $oldsymbol{\circ}$ For any element $L\in ilde{Q}_p$, $ilde{g}_p$ is invariant by L, i.e., $ilde{g}_p(LX,Y)+ ilde{g}_p(X,LY)=0$ for $X,Y\in T_p\widetilde{M}$, $p\in \widetilde{M}$.

$$ilde{I}_1^2 = -1, \ ilde{I}_2^2 = ilde{I}_3^2 = 1, \ ilde{I}_1 ilde{I}_2 = - ilde{I}_2 ilde{I}_1 = - ilde{I}_3, \ ilde{I}_2 ilde{I}_3 = - ilde{I}_3 ilde{I}_2 = ilde{I}_1, \ ilde{I}_3 ilde{I}_1 = - ilde{I}_1 ilde{I}_3 = - ilde{I}_2.$$

- $oldsymbol{\circ}$ For any element $L\in ilde{Q}_p$, $ilde{g}_p$ is invariant by L, i.e., $ilde{g}_p(LX,Y)+ ilde{g}_p(X,LY)=0$ for $X,Y\in T_p\widetilde{M}$, $p\in \widetilde{M}$.
- The vector bundle \tilde{Q} is parallel in $\operatorname{End} T\widetilde{M}$ with respect to the pseudo-Riemannian connection $\widetilde{\nabla}$ associated with \tilde{g} .

$$ilde{I}_1^2 = -1, \ ilde{I}_2^2 = ilde{I}_3^2 = 1, \quad ilde{I}_1 ilde{I}_2 = - ilde{I}_2 ilde{I}_1 = - ilde{I}_3, \ ilde{I}_2 ilde{I}_3 = - ilde{I}_3 ilde{I}_2 = ilde{I}_1, \quad ilde{I}_3 ilde{I}_1 = - ilde{I}_1 ilde{I}_3 = - ilde{I}_2.$$

- $oldsymbol{\circ}$ For any element $L\in ilde{Q}_p$, $ilde{g}_p$ is invariant by L, i.e., $ilde{g}_p(LX,Y)+ ilde{g}_p(X,LY)=0$ for $X,Y\in T_p\widetilde{M}$, $p\in \widetilde{M}$.
- The vector bundle \tilde{Q} is parallel in $\operatorname{End} T\widetilde{M}$ with respect to the pseudo-Riemannian connection $\widetilde{\nabla}$ associated with \tilde{g} .
- Complex (1,1)-plane Grassmannian $\mathbb{G}_{1,1}(\mathbb{C}_1^{n+1})$ is an example of para-quaternionic Kähler manifold.

• Let $V_{1,1}(\mathbb{C}^{n+1}_1)$ be the complex Stiefel manifold of orthonormal timelike and spacelike vectors (u_-,u_+) in \mathbb{C}^{n+1}_1 , and

- Let $V_{1,1}(\mathbb{C}^{n+1}_1)$ be the complex Stiefel manifold of orthonormal timelike and spacelike vectors (u_-,u_+) in \mathbb{C}^{n+1}_1 , and
- let $\pi^G: V_{1,1}(\mathbb{C}^{n+1}_1) \to \mathbb{G}_{1,1}(\mathbb{C}^{n+1}_1)$ be the projection defined by $(u_-, u_+) \mapsto \mathbb{C} u_- \oplus \mathbb{C} u_+$.

- Let $V_{1,1}(\mathbb{C}^{n+1}_1)$ be the complex Stiefel manifold of orthonormal timelike and spacelike vectors (u_-,u_+) in \mathbb{C}^{n+1}_1 , and
- let $\pi^G: V_{1,1}(\mathbb{C}^{n+1}_1) \to \mathbb{G}_{1,1}(\mathbb{C}^{n+1}_1)$ be the projection defined by $(u_-, u_+) \mapsto \mathbb{C}u_- \oplus \mathbb{C}u_+$.
- Then tangent space $T_{\pi^G(u_-,u_+)}(\mathbb{G}_{1,1}(\mathbb{C}_1^{n+1}))$ is identified with $\{u_-,u_+\}^\perp imes \{u_-,u_+\}^\perp$ in $\mathbb{C}_1^{n+1} imes \mathbb{C}_1^{n+1}$ through π_*^G .

• With respect to $(u_-,u_+)\in V_{1,1}(\mathbb{C}^{n+1}_1)$, para-Q.K. structures I_1,I_2 and I_3 of of $\mathbb{G}_{1,1}(\mathbb{C}^{n+1}_1)$ are given by: for $(x_1,x_2)\in \{u_-,u_+\}^\perp\times \{u_-,u_+\}^\perp$,

- With respect to $(u_-,u_+)\in V_{1,1}(\mathbb{C}^{n+1}_1)$, para-Q.K. structures I_1,I_2 and I_3 of of $\mathbb{G}_{1,1}(\mathbb{C}^{n+1}_1)$ are given by: for $(x_1,x_2)\in \{u_-,u_+\}^\perp\times \{u_-,u_+\}^\perp$,
- $ullet I_1: (x_1,x_2) \mapsto (x_1,x_2) egin{pmatrix} -i & 0 \ 0 & i \end{pmatrix} = (-ix_1,ix_2),$

- With respect to $(u_-,u_+)\in V_{1,1}(\mathbb{C}^{n+1}_1)$, para-Q.K. structures I_1,I_2 and I_3 of of $\mathbb{G}_{1,1}(\mathbb{C}^{n+1}_1)$ are given by: for $(x_1,x_2)\in\{u_-,u_+\}^\perp\times\{u_-,u_+\}^\perp$,
- $ullet I_1: (x_1,x_2) \mapsto (x_1,x_2) egin{pmatrix} -i & 0 \ 0 & i \end{pmatrix} = (-ix_1,ix_2),$
- $ullet \ I_2: (x_1,x_2) \mapsto (x_1,x_2) egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix} = (x_2,x_1),$

- With respect to $(u_-,u_+)\in V_{1,1}(\mathbb{C}^{n+1}_1)$, para-Q.K. structures I_1,I_2 and I_3 of of $\mathbb{G}_{1,1}(\mathbb{C}^{n+1}_1)$ are given by: for $(x_1,x_2)\in \{u_-,u_+\}^\perp\times \{u_-,u_+\}^\perp$,
- $ullet \ I_1: (x_1,x_2) \mapsto (x_1,x_2) egin{pmatrix} -i & 0 \ 0 & i \end{pmatrix} = (-ix_1,ix_2),$
- $ullet \ I_2: (x_1,x_2) \mapsto (x_1,x_2) egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix} = (x_2,x_1),$
- $ullet I_3: (x_1,x_2) \mapsto (x_1,x_2) egin{pmatrix} 0 & -i \ i & 0 \end{pmatrix} = (ix_2,-ix_1).$

- With respect to $(u_-,u_+)\in V_{1,1}(\mathbb{C}^{n+1}_1)$, para-Q.K. structures I_1,I_2 and I_3 of of $\mathbb{G}_{1,1}(\mathbb{C}^{n+1}_1)$ are given by: for $(x_1,x_2)\in \{u_-,u_+\}^\perp\times \{u_-,u_+\}^\perp$,
- $ullet \ I_1: (x_1,x_2) \mapsto (x_1,x_2) egin{pmatrix} -i & 0 \ 0 & i \end{pmatrix} = (-ix_1,ix_2),$
- $ullet I_2: (x_1,x_2) \mapsto (x_1,x_2) egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix} = (x_2,x_1),$
- $ullet I_3: (x_1,x_2) \mapsto (x_1,x_2) egin{pmatrix} 0 & -i \ i & 0 \end{pmatrix} = (ix_2,-ix_1).$
- ullet Then we have $I_1^2=-1$ and $I_2^2=I_3^2=1$.

ullet Let M^{2n-1} be a real hypersurface in \mathbb{CH}^n and

- ullet Let M^{2n-1} be a real hypersurface in \mathbb{CH}^n and
- ullet let $g:M o \mathbb{G}_{1,1}(\mathbb{C}^{n+1}_1)$ be the Gauss map.

- ullet Let M^{2n-1} be a real hypersurface in \mathbb{CH}^n and
- ullet let $g:M o \mathbb{G}_{1,1}(\mathbb{C}^{n+1}_1)$ be the Gauss map.
- Suppose M is a Hopf hypersurface with $|\mu| > 2$ (resp. $0 \le |\mu| < 2$).

- ullet Let M^{2n-1} be a real hypersurface in \mathbb{CH}^n and
- ullet let $g:M o \mathbb{G}_{1,1}(\mathbb{C}^{n+1}_1)$ be the Gauss map.
- Suppose M is a Hopf hypersurface with $|\mu| > 2$ (resp. $0 < |\mu| < 2$).
- ullet Then g(M) is a real (2n-2)-dimensional submanifold of $\mathbb{G}_{1,1}(\mathbb{C}^{n+1}_1)$, and

ullet There exist sections $ilde{I}_{ ilde{1}}$, $ilde{I}_{ ilde{2}}$ and $ilde{I}_{3}$ of the bundle $ilde{Q}|_{g(M)}$ of the para-quaternionic Kähler structure such that

- ullet There exist sections $ilde{I}_{ ilde{1}}$, $ilde{I}_{ ilde{2}}$ and $ilde{I}_{3}$ of the bundle $ilde{Q}|_{g(M)}$ of the para-quaternionic Kähler structure such that
- ullet they are orthonormal with respect to natural inner product on $ilde{Q}_{g(p)}$ for $p\in \Sigma$ satisfying

- ullet There exist sections $ilde{I}_{ ilde{1}}$, $ilde{I}_{ ilde{2}}$ and $ilde{I}_{3}$ of the bundle $ilde{Q}|_{g(M)}$ of the para-quaternionic Kähler structure such that
- they are orthonormal with respect to natural inner product on $ilde{Q}_{q(p)}$ for $p \in \Sigma$ satisfying

0

$$\begin{split} (\tilde{I}_{\tilde{1}})^2 &= -1 \quad (\text{resp.}(\tilde{I}_{\tilde{1}})^2 = 1), \\ (\tilde{I}_{\tilde{2}})^2 &= 1 \quad (\text{resp.}(\tilde{I}_{\tilde{2}})^2 = -1) \quad \text{and} \quad (\tilde{I}_{\tilde{3}})^2 = 1, \end{split}$$

- ullet There exist sections $ilde{I}_{ ilde{1}}$, $ilde{I}_{ ilde{2}}$ and $ilde{I}_{3}$ of the bundle $ilde{Q}|_{g(M)}$ of the para-quaternionic Kähler structure such that
- they are orthonormal with respect to natural inner product on $ilde{Q}_{q(p)}$ for $p \in \Sigma$ satisfying

a

$$(ilde{I}_{ ilde{1}})^2=-1 \quad (\mathsf{resp.}(ilde{I}_{ ilde{1}})^2=1),$$
 $(ilde{I}_{ ilde{2}})^2=1 \quad (\mathsf{resp.}(ilde{I}_{ ilde{2}})^2=-1) \quad \mathsf{and} \quad (ilde{I}_{ ilde{3}})^2=1,$

ullet such that $dg_x(T_xM)$ is invariant under $ilde{I}_{ ilde{1}}$ and $ilde{I}_{ ilde{2}}dg_x(T_xM), ilde{I}_3dg_x(T_xM)$ are orthogonal to $dg_x(T_xM)$.

• The induced metric on g(M) in $\mathbb{G}_{1,1}(\mathbb{C}^{n+1}_1)$ has signature (p,q), where

• The induced metric on g(M) in $\mathbb{G}_{1,1}(\mathbb{C}_1^{n+1})$ has signature (p,q), where

$$egin{aligned} p &= \sum_{|\lambda|>1} \dim\{X|\ AX = \lambda X,\ X\perp \xi\}, \ q &= \sum_{|\lambda|<1} \dim\{X|\ AX = \lambda X,\ X\perp \xi\}. \end{aligned}$$

• The induced metric on g(M) in $\mathbb{G}_{1,1}(\mathbb{C}^{n+1}_1)$ has signature (p,q), where

•

$$egin{aligned} p &= \sum_{|\lambda|>1} \dim\{X|\; AX = \lambda X,\; X\perp \xi\}, \ q &= \sum_{|\lambda|<1} \dim\{X|\; AX = \lambda X,\; X\perp \xi\}. \end{aligned}$$

• When $|\mu| > 2$, p and q are both even.

• The induced metric on g(M) in $\mathbb{G}_{1,1}(\mathbb{C}^{n+1}_1)$ has signature (p,q), where

$$egin{aligned} p &= \sum_{|\lambda|>1} \dim\{X|\; AX = \lambda X,\; X\perp \xi\}, \ q &= \sum_{|\lambda|<1} \dim\{X|\; AX = \lambda X,\; X\perp \xi\}. \end{aligned}$$

- When $|\mu| > 2$, p and q are both even.
- When $0 \le |\mu| < 2$, we have p = q.

• Furthermore if p + q = 2n - 2,

- Furthermore if p + q = 2n 2,
- ullet then the induced metric of g(M) is non-degenerate and

- Furthermore if p + q = 2n 2,
- ullet then the induced metric of g(M) is non-degenerate and
- g(M) is a pseudo-Kähler (resp. para-Kähler) submanifold of $\mathbb{G}_{1,1}(\mathbb{C}^{n+1})$.

ullet Let M^{2n-1} be a real hypersurface in \mathbb{CH}^n and

- ullet Let M^{2n-1} be a real hypersurface in \mathbb{CH}^n and
- ullet let $g:M o \mathbb{G}_{1,1}(\mathbb{C}^{n+1}_1)$ be the Gauss map.

- ullet Let M^{2n-1} be a real hypersurface in \mathbb{CH}^n and
- ullet let $g:M o \mathbb{G}_{1,1}(\mathbb{C}^{n+1}_1)$ be the Gauss map.
- Suppose M is a Hopf hypersurface with $|\mu| = 2$.

- ullet Let M^{2n-1} be a real hypersurface in \mathbb{CH}^n and
- ullet let $g:M o \mathbb{G}_{1,1}(\mathbb{C}^{n+1}_1)$ be the Gauss map.
- Suppose M is a Hopf hypersurface with $|\mu| = 2$.
- ullet Then g(M) is a real (2n-2)-dimensional submanifold of $\mathbb{G}_{1,1}(\mathbb{C}^{n+1}_1)$, and

ullet There exist sections $ilde{I}_{ ilde{1}}$ and $ilde{I}_{ ilde{2}}$ of the bundle $ilde{Q}|_{g(M)}$ of the para-quaternionic Kähler structure such that

- ullet There exist sections $ilde{I}_{ ilde{1}}$ and $ilde{I}_{ ilde{2}}$ of the bundle $ilde{Q}|_{g(M)}$ of the para-quaternionic Kähler structure such that
- ullet they are orthonormal with respect to natural inner product on $ilde{Q}_{g(p)}$ for $p\in \Sigma$ satisfying

- ullet There exist sections $ilde{I}_{ ilde{1}}$ and $ilde{I}_{ ilde{2}}$ of the bundle $ilde{Q}|_{g(M)}$ of the para-quaternionic Kähler structure such that
- ullet they are orthonormal with respect to natural inner product on $ilde{Q}_{g(p)}$ for $p\in \Sigma$ satisfying

•

$$(\tilde{I}_{ ilde{1}})^2 = 1, \quad (\tilde{I}_{ ilde{2}})^2 = 0$$

- ullet There exist sections $ilde{I}_{ ilde{1}}$ and $ilde{I}_{ ilde{2}}$ of the bundle $ilde{Q}|_{g(M)}$ of the para-quaternionic Kähler structure such that
- ullet they are orthonormal with respect to natural inner product on $ilde{Q}_{g(p)}$ for $p\in \Sigma$ satisfying

•

$$(\tilde{I}_{\tilde{1}})^2 = 1, \quad (\tilde{I}_{\tilde{2}})^2 = 0$$

ullet such that $ilde{I_1}dg_x(T_xM), ilde{I_2}dg_x(T_xM)$ are orthogonal to $dg_x(T_xM).$

• The induced metric on g(M) in $\mathbb{G}_{1,1}(\mathbb{C}_1^{n+1})$ has signature (p,q), where

• The induced metric on g(M) in $\mathbb{G}_{1,1}(\mathbb{C}^{n+1}_1)$ has signature (p,q), where

•

$$egin{aligned} p &= \sum_{|\lambda|>1} \dim\{X|\; AX = \lambda X,\; X\perp \xi\}, \ q &= \sum_{|\lambda|<1} \dim\{X|\; AX = \lambda X,\; X\perp \xi\}, \end{aligned}$$

and

• The induced metric on g(M) in $\mathbb{G}_{1,1}(\mathbb{C}^{n+1}_1)$ has signature (p,q), where

•

$$egin{aligned} p &= \sum_{|\lambda|>1} \dim\{X|\; AX = \lambda X,\; X\perp \xi\}, \ q &= \sum_{|\lambda|<1} \dim\{X|\; AX = \lambda X,\; X\perp \xi\}, \end{aligned}$$

and

• satisfies $p+q \leq n-1$.

• Each fiber S_- (resp. S_+ and S_0) of the *twistor space* \mathcal{Z}_- (resp. \mathcal{Z}_+ and \mathcal{Z}_0) satisfying $I^2=-1$ (resp. $I^2=1$ and $I^2=0$) of $\mathbb{G}_{1,1}(\mathbb{C}_1^{n+1})$ is identified with hyperbolic plane \mathbb{H} (resp. de Sitter plane \mathbb{S}_1^2 and lightcone C) in a Lie algebra $\mathfrak{su}(1,1)$, and

- Each fiber S_- (resp. S_+ and S_0) of the *twistor space* \mathcal{Z}_- (resp. \mathcal{Z}_+ and \mathcal{Z}_0) satisfying $I^2=-1$ (resp. $I^2=1$ and $I^2=0$) of $\mathbb{G}_{1,1}(\mathbb{C}_1^{n+1})$ is identified with hyperbolic plane \mathbb{H} (resp. de Sitter plane \mathbb{S}_1^2 and lightcone C) in a Lie algebra $\mathfrak{su}(1,1)$, and
- for each corresponding 1-parameter subgroup $\exp(sX)$ $(X \in S_-)$ (resp. S_+ and S_0), orbits in the complex hyperbolic line $[u_-, u_+] = \mathbb{CH}^1$ in \mathbb{CH}^n are concentric geodesic circles (resp. equidistance curves of a geodesic and horocycles).

• From this, we may identify the *twistor space* \mathcal{Z}_{-} (resp. \mathcal{Z}_{+} and \mathcal{Z}_{0}) of $\mathbb{G}_{1,1}(\mathbb{C}_{1}^{n+1})$ and

- From this, we may identify the *twistor space* \mathcal{Z}_{-} (resp. \mathcal{Z}_{+} and \mathcal{Z}_{0}) of $\mathbb{G}_{1,1}(\mathbb{C}_{1}^{n+1})$ and
- the space of concentric circles (resp. equidistance curves of a geodesic and horocycles) in $\mathbb{CH}^1 \subset \mathbb{CH}^n$.

• Let M^{2n-1} be a Hopf hypersurface in \mathbb{CH}^n with Hopf curvature μ with $|\mu|=2$. For each point p in M, let $\psi(p)$ be the integral curve (horocycle) of ξ through p.

- Let M^{2n-1} be a Hopf hypersurface in \mathbb{CH}^n with Hopf curvature μ with $|\mu|=2$. For each point p in M, let $\psi(p)$ be the integral curve (horocycle) of ξ through p.
- Then we have a map $\psi_0:M o \mathcal{Z}_0$, and the image $\psi_0(M)$ is a horizontal submanifold in \mathcal{Z}_0 .

- Let M^{2n-1} be a Hopf hypersurface in \mathbb{CH}^n with Hopf curvature μ with $|\mu|=2$. For each point p in M, let $\psi(p)$ be the integral curve (horocycle) of ξ through p.
- Then we have a map $\psi_0: M \to \mathcal{Z}_0$, and the image $\psi_0(M)$ is a horizontal submanifold in \mathcal{Z}_0 .
- Conversely, let $E_0 = U(1,n)/U(n-1) \times U(1) \to \mathcal{Z}$ be a real line bundle over \mathcal{Z}_0 and let Σ be a horizontal submanifold of \mathcal{Z}_0 .

- Let M^{2n-1} be a Hopf hypersurface in \mathbb{CH}^n with Hopf curvature μ with $|\mu|=2$. For each point p in M, let $\psi(p)$ be the integral curve (horocycle) of ξ through p.
- Then we have a map $\psi_0: M \to \mathcal{Z}_0$, and the image $\psi_0(M)$ is a horizontal submanifold in \mathcal{Z}_0 .
- Conversely, let $E_0 = U(1,n)/U(n-1) \times U(1) \to \mathcal{Z}$ be a real line bundle over \mathcal{Z}_0 and let Σ be a horizontal submanifold of \mathcal{Z}_0 .
- ullet We denote ψ^*E_0 the pullback bundle of E_0 over Σ .

• We have a map $\Phi_0: \psi^*E_0 \to \mathbb{CH}^n(-4)$ such that each fiber of $\psi^*E_0 \to \Sigma$ is mapped to a horocycle in $\mathbb{CH}^1 \subset \mathbb{CH}^n$.

- We have a map $\Phi_0: \psi^*E_0 \to \mathbb{CH}^n(-4)$ such that each fiber of $\psi^*E_0 \to \Sigma$ is mapped to a horocycle in $\mathbb{CH}^1 \subset \mathbb{CH}^n$.
- Then on the subset U of regular points of Φ_0 , $\Phi_0(U)$ is a Hopf hypersurface in $\mathbb{CH}^n(-4)$ with Hopf curvature $\mu=\pm 2$.

- We have a map $\Phi_0: \psi^*E_0 \to \mathbb{CH}^n(-4)$ such that each fiber of $\psi^*E_0 \to \Sigma$ is mapped to a horocycle in $\mathbb{CH}^1 \subset \mathbb{CH}^n$.
- Then on the subset U of regular points of Φ_0 , $\Phi_0(U)$ is a Hopf hypersurface in $\mathbb{CH}^n(-4)$ with Hopf curvature $\mu=\pm 2$.
- Similar results hold for Hopf hypersurfaces M^{2n-1} in $\mathbb{CH}^n(-4)$ with Hopf curvature $\mu \neq \pm 2$ and horizontal submanifolds in the twistor spaces \mathcal{Z}_{\pm} .

- We have a map $\Phi_0: \psi^*E_0 \to \mathbb{CH}^n(-4)$ such that each fiber of $\psi^*E_0 \to \Sigma$ is mapped to a horocycle in $\mathbb{CH}^1 \subset \mathbb{CH}^n$.
- Then on the subset U of regular points of Φ_0 , $\Phi_0(U)$ is a Hopf hypersurface in $\mathbb{CH}^n(-4)$ with Hopf curvature $\mu=\pm 2$.
- Similar results hold for Hopf hypersurfaces M^{2n-1} in $\mathbb{CH}^n(-4)$ with Hopf curvature $\mu \neq \pm 2$ and horizontal submanifolds in the twistor spaces \mathcal{Z}_+ .
- Hence any Hopf Hypersurfaces in \mathbb{CH}^n is treated unified way.

• Let Σ^{n-1} be a real (n-1)-dimensional submanifold in the twistor space \mathcal{Z} of $\mathbb{G}_2(\mathbb{C}^{n+1})$.

- Let Σ^{n-1} be a real (n-1)-dimensional submanifold in the twistor space \mathcal{Z} of $\mathbb{G}_2(\mathbb{C}^{n+1})$.
- Then we have a ruled submanifold (i.e., foliated by geodesics of \mathbb{CP}^n) M^n of \mathbb{CP}^n as above.

- Let Σ^{n-1} be a real (n-1)-dimensional submanifold in the twistor space \mathcal{Z} of $\mathbb{G}_2(\mathbb{C}^{n+1})$.
- Then we have a ruled submanifold (i.e., foliated by geodesics of \mathbb{CP}^n) M^n of \mathbb{CP}^n as above.
- ullet We can see that M^n is a Lagrangian submanifold of \mathbb{CP}^n if and only if

- Let Σ^{n-1} be a real (n-1)-dimensional submanifold in the twistor space \mathcal{Z} of $\mathbb{G}_2(\mathbb{C}^{n+1})$.
- Then we have a ruled submanifold (i.e., foliated by geodesics of \mathbb{CP}^n) M^n of \mathbb{CP}^n as above.
- ullet We can see that M^n is a Lagrangian submanifold of \mathbb{CP}^n if and only if
- Σ^{n-1} is horizontal w.r.t. twistor fibration and $\pi^G(\Sigma)$ is a submanifold of $\mathbb{G}_2(\mathbb{C}^{n+1})$ satisfying

- Let Σ^{n-1} be a real (n-1)-dimensional submanifold in the twistor space \mathcal{Z} of $\mathbb{G}_2(\mathbb{C}^{n+1})$.
- Then we have a ruled submanifold (i.e., foliated by geodesics of \mathbb{CP}^n) M^n of \mathbb{CP}^n as above.
- ullet We can see that M^n is a Lagrangian submanifold of \mathbb{CP}^n if and only if
- Σ^{n-1} is horizontal w.r.t. twistor fibration and $\pi^G(\Sigma)$ is a submanifold of $\mathbb{G}_2(\mathbb{C}^{n+1})$ satisfying
- (i) 'totally real' w.r.t. the standard complex structure of $\mathbb{G}_2(\mathbb{C}^{n+1})$ and (ii) there exists a section \tilde{I} to $Q|_{\Sigma}$ such for each section I to $Q|_{\Sigma}$ which anticommutes with \tilde{I} , $I(T\Sigma) \perp T\Sigma$ holds.